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Abstract

The interaction between circularly polarized (CP) radiation and charged

particles can lead to generation of magnetic field through an inverse Faraday

effect. The spin of the circularly polarized electromagnetic wave can be con-

verted into the angular momentum of the charged particles so long as there

is dissipation. We demonstrate this by considering two mechanisms of angu-

lar momentum absorption relevant for laser-plasma interactions: electron-ion

collisions and ionization. The precise dissipative mechanism, however, plays

a role in determining the efficiency of the magnetic field generation.

The interaction between circularly polarized (CP) radiation and charged particles occurs

in nature and in the laboratory. For example, radio pulsars are believed to be rotating

magnetized neutron stars [1,2] which produce powerful circularly polarized electromagnetic

waves along the rotation axis. Recent laboratory experiments [3–5] demonstrated that

large quasi-static magnetic fields can be produced when a circularly polarized laser pulse

interacts with the plasma. This method of magnetic field generation can be utilized for a

hybrid inertial-magnetic fusion confinement [6].

The circularly polarized EM radiation has non-vanishing angular momentum associated
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with the photon spin. In the course of the wave-particle interaction, this spin can be trans-

ferred to the medium [7]. When a medium contains free electrons, azimuthal electric current

can be induced, and a magnetic field is generated through the inverse Faraday effect (IFE).

IFE in an arbitrary gyrotropic medium was first predicted on the basis of a thermodynamic

argument by Pitaevskii [8], and later re-discovered in plasmas by Deschamps et. al. and

Steiger and Woods [9]. They argued that the CP wave with a normalized vector poten-

tial a0 = eA/mc2 and frequency ω induces an axial magnetic field B0 =
mc

2e

a2ω2
p

ω
, where

ωp = (4πe2n/m)1/2 is the electron plasma frequency. The conditions for producing this

azimuthal flow have not been addressed in Ref. [9] and in subsequent publications on the

subject [4,10–12]. For example, the classic IFE (Bz ∝ a2
0) cannot occur in a pre-formed

collisionless plasma.

The purpose of this Letter is to demonstrate that strong axial magnetic fields proportional

to the laser intensity can be generated in the plasma by an intense CP laser pulse owing to

dissipative effects which result in the absorption of the laser angular momentum. We present

examples of two such effects: electron collisions and ionization inside the laser pulse. It is

of importance also precisely how these dissipative effects enter. Note that a higher-order

IFE (Bz ∝ a4
0) is possible even in the absence of the angular momentum absorption due to

relativistic effects [13].

First, note that a classical CP electromagnetic wave indeed possesses angular momentum

given by its spin. The vector potential of the right-hand polarized EM field is given by the

following expression:

e ~A

mc2
=

[
~e+

2
a0(r) + i

~ez

2k

∂a0

∂r

]
eiθ + c.c. (1)

where θ = kz − ωt + φ is the wave phase, φ = tan−1 y/x is the angle of the position phasor,

and ~e+ = ~er + i~eφ. The normalized electric ~e = (−1/c)∂~a/∂t and magnetic ~b = ∇×~a fields

define the normalized Poynting flux ~p = ~e ×~b:

~p = k2

[
a2

0~ez − 1

2k

∂a2
0

∂r
~eφ

]
, (2)
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where we have assumed a tenuous plasma ω2
p � ω2 and a broad laser pulse with the focal

spot σ � k−1. The transverse profile of the pulse is assumed Gaussian which is a valid

assumption in the vicinity of the laser focus. The first term is the Poynting flux in the

forward direction and the second term is associated with the photon spin. Therefore, the

Poynting flux of the laser pulse spirals around the z− axis. This spiraling motion is precisely

the classical equivalent of the photon spin in quantum mechanics. The azimuthal time-

averaged component of the Poynting flux vanishes for linear polarization, and reverses its

sign for the left-polarized EM wave (polarity is reversed by replacing ~e+ by ~e− = ~er − i~eφ).

To calculate magnetic field generation in a weakly collisional plasma, we integrate the

electron motion in the field of a transversely non-uniform laser pulse. To examine the

electron motion in the EM wave, it is convenient to use the Lagrangian description [14]: let

~ξ(t, ~x0) be the displacement of an electron initially located at ~x = ~x0, which, for a0 < 1,

satisfies the non-relativistic equation of motion

∂~̇ξ

∂t
+ γ~̇ξ = − e

m


 ~E +

~̇ξ × ~B

c


 , (3)

where ~E and ~B are evaluated at ~x0 + ~ξ. Collisions are implemented in our model through

the friction coefficient γ.

It is convenient to separate the electron displacement into the high- and low-frequency

components ~ξ1(t, ~x0) and ~ξ2(t, ~x0), respectively. Under a weakly relativistic assumption

a2
0 � 1, ~ξ1(t, ~x0) is of order a0: ~̇ξ1/c ≈ ~a + γ/ω2∂~a/∂t. Note that ~̇ξ1 · ~E 6= 0, resulting in the

collisional damping of the EM wave (inverse bremsstrahlung). The inverse bremsstrahlung

(IB) rate γw is given by γw = γfω
2
p/ω

2 [15], where γf is the fast collisions frequency.

Determining the appropriate collision frequency γ or γf is not straightforward. For

example, for electron-ion collisions, in the limit of weak EM wave a0c � vth, the

averaged over the Maxwellian distribution high-frequency collision rate is given by

γf = (4πZie
4n0Λf/m

1/2T 3/2
e ), where Te is the electron temperature, Zi is the ion charge

(taken to be unity for singly ionized ions), and Λf = ln
(
25/2T 3/2

e /Γ5/2ω0Zie
2m1/2

)
, where

Γ = 0.577 . . . is the Euler constant [17]. For ω � ωp, Λf is smaller than the standard
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Coulomb logarithm because only collisions with impact parameters ρ < v/ω contribute to

the inverse bremsstrahlung. Even greater reduction of the IB occurs for strong electromag-

netic waves with a0c ≥ vth: γf ∝ (a0c/vth)
−3 [16].

A second characteristic collision frequency γs describes the scattering rate of the slow

oscillation center drifts. For electron-ion collisions in a hot plasma with vth > a0c, it is

given by γs = 4πZie
4n0/(m

1/2T 3/2
e )Λ. Interestingly, γs can be substantially higher than γf

because both large and small angle collisions contribute to γs, but only the large-angle

collisions contribute to γf [17]. The difference between the two collisional rates is small

when the laser intensity is weak: only the Coulomb logarithm is different for γs and γf .

However, in a strongly-illuminated plasma, γs/γf ∼ (vosc/vth)
2 � 1 [18].

To calculate the time-averaged electron current ~Je, note that in the Lagrangian formu-

lation the total time-averaged electron velocity

vsφ(~x) =
∫

d3x0 〈ξ̇φ δ3[~x − ~x0 − ~ξ]〉

consists of two components ~vs = ~v c
s +~v m

s : the slow convective drift of the oscillation centers

~v c
s = ~̇ξ2 and the magnetization drift ~v m

s = −(~ξ1 · ∇)~̇ξ1. (We note that if ∇ · ~A = 0 is not

satisfied as in Refs. [11,12], then an additional term enξ̇1φ(∇ · ~ξ1) appears to contribute to

magnetic field generation. This leads to an incorrect conclusion that magnetic field can be

generated in a homogeneous plasma in the absence of dissipative processes).

Substituting ~ξ1 into From Eq. (3), the time-averaged equation for ~ξ2 is derived:

∂~̇ξ2

∂t
+ γs

~̇ξ2 = −c2~∇
(

a2
0

2

)
− e ~Es

m
+

∂

∂t

[
(~ξ1 · ∇)~̇ξ1

]
+ γf

[
(~ξ1 · ∇)~̇ξ1 − ~̇ξ1 ×∇× ~ξ1

]
. (4)

Note that we have substituted the appropriate collision frequency γs into the LHS of Eq. (4).

The −∇(a2
0/2) term in the RHS of Eq. (4) is the standard ponderomotive force which does

not project onto φ-direction for azimuthally symmetric laser pulse. Electric field ~Es is

induced by the quasi-static magnetic field through Faraday’s law; it vanishes in steady state,

and is in general small when the spotsize σ < c/ωp. The last term in the RHS of Eq. (4) also
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does not project onto φ-direction. The remaining term, ∂t

[
(~ξ1 · ∇)~̇ξ1

]
, determines, in the

absence of collisions, the oscillation center drift: ~̇ξ2 = (~ξ1 · ∇)~̇ξ1. This drift exactly cancels

the magnetization drift: ~vs = ~̇ξ2 − (~ξ1 · ∇)~̇ξ1 = 0. Therefore, without collisions there is no

time-averaged azimuthal current and, consequently, no axial magnetic field. With collisions,

in steady state, ~̇ξ2 = 0, and the time-averaged electron fluid velocity ~vs = −(~ξ1 ·∇)~̇ξ1 drives

magnetic field.

Note that the convective velocity ~v c
s = ~̇ξ2 = (~ξ1 · ∇)~̇ξ1 represents a real physical drift of

the oscillation center of an electron subjected to the transversely inhomogeneous CP elec-

tromagnetic wave which has been, to our knowledge, overlooked. To visualize this drift,

we performed a numerical simulation of the single-particle motion in the prescribed elec-

tromagnetic field of a laser pulse which is adiabatically turned on over several laser periods

(see Fig. 1 for parameters). Azimuthal displacement y = rφ of the electron through ap-

proximately 15 laser periods is plotted in Fig. 1 without (solid line) and with (dashed line)

collisions. The thin solid line drawn through the displacement maxima in the collisionless

case (γ = 0) is a visual aid indicating the drift of the oscillation centers in the negative φ di-

rection. Its slope is determined by the oscillation center (OC) drift velocity ξ̇2y = (c2/2ω)∂ra
2
0

derived above. Since the current produced by the OC drift cancells the magnetization drift

~v m
sy = −(~ξ1 · ∇)~̇ξ1y, no azimutal current is produced without collisions. With collisions, for

γ/ω = 0.1, the OC drift is dissipated by the frictional force. For simplicity, the subtlety of

γs 6= γf is neglected in the simulation.

The equation for the total azimuthal component of the fluid velocity is given by

∂tvsφ + γsvsφ = −γs

〈
(~ξ1 · ∇)ξ̇1φ

〉
− eEsφ/m. This can now be used together with Ampere’s

law to obtain an equation for the axial component of the magnetic field:

∂

∂t

(
∇2

rBz − k2
pBz

)
+ γs∇2

rBz = γs∇2
rB0, (5)

where kp = ωp/c, ∇2
r = r−1∂r(r∂r) and B0 = −2πenca2

0/ω is the steady-state magnetic

field in the plasma, as calculated by Steiger and Woods [9], and we assumed that the laser

pulse which is transversely thin and varies slowly in z and t (typical for tightly-focused laser
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pulses). For large times magnetic field Bz approaches B0(r). Note that magnetic field can

never exceeds B0, no matter how fast is the rate of the angular momentum loss by the EM

wave. This is simply because, while the electron plasma experiences larger torque for larger

γf , it also experiences a larger friction force.

Note that the appearance in the plasma of net angular momentum is due to the unequal

effect of collisions on the cancelling drifts, namely the oscillation center drift and the mag-

netization drift. We can compare the appearance of angular momentum due to a circularly

polarized wave with the appearance of linear momentum, or current, due to an electrostatic

wave with large phase velocity vph � vth [19]. In both cases, the absence of collisions results

in cancelling currents. The electrostatic wave carries no momentum in the sense that were

it to damp by means of quasilinear theory within a plasma, say on electrons, as a result of

this damping, the electron distribution function would conserve momentum but not energy.

Therefore, while the wave may appear to give momentum to resonant electrons on the tail

of the electron velocity distribution, there is in fact an entirely cancelling current by the

nonresonant slow electrons. However, should the nonresonant bulk electrons collide more

frequently than the fast tail electrons, the tail electrons will carry a current. Collisions are

similarly necessary for an electromagnetic wave to drive current [20], although in that case

there is no bulk current to cancel, but rather an asymmetry is induced in the collisions of the

counter-propagating electron tails. Similarly, other current drive mechanisms also require

non-vanishing collisions [21].

Another important thing to note is that the turn-on time of the magnetic field Bz is

determined solely by γs (i. e. by the small-angle collisions). The power dissipation rate due

to collisions is, however, determined by γf (i. e. by the large-angle collisions). One can pose

the following question: how much dissipated power per unit volume dP/dV is required to

maintain a given magnetic field B. The answer is given by an efficiency formula

B

dP/dV
=

e

2mcωγf
, (6)

which implies that in a strongly illuminated plasmas one can achieve a high efficiency of
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B-field generation due to the reduction in the IB rate. The turn-on time would only increase

slightly since γs � γf . Note that, as with the current drive efficiencies [21], this efficiency

scales inversely with collision rate. The current drive analogy is appropriate when inverse

bremsstrahlung is the principal absorption mechanism.

Collisions is not the only mechanism which enables angular momentum absorption and

magnetic field generation. Gas ionization in the presence of EM wave also enables IFE.

Moreover, we find that it is not necessary for the ionization to be done by the CP pulse

itself: electrons can be released from the atoms through any ionization process as long as it

occurs inside the pulse. This process is purely classical, and should be distinguished from

the dc magnetization of gases and solids achieved by the direct optical pumping [22,23].

Assume that every electron which is released from an atom has a vanishing velocity at

the time of its release. Lagrangian description of the continuously ionized plasma is still

possible, only now the displacement of the j’s electron ~ξ(j)(t) ≡ ~ξ(t, t′, ~x0) becomes a function

of its release time t′. For simplicity, assume a stratified geometry, where x corresponds to the

radial position r and y corresponds to the azimuthal distance rφ. Neglecting the inductive

electric field (for σ < c/ωp), by conservation of canonical momentum, the azimuthal velocity

of the j’s electron at the location ~x = ~x0 + ~ξ(j) at time t is

β(j)
y = ay(t, ~x) − ay(t

′, ~x0). (7)

In a preformed plasma, only the first term in the RHS of Eq. (7) remains. The second

term in the RHS of Eq. (7) arises because the j’s electron is born in a non-vanishing vector

potential ay(t
′, ~x0). It is absent for electrons produced before the arrival of the laser pulse.

In a completely preformed plasma, in the absence of collisions, there is no azimuthal current

even inside the laser pulse. However, finite azimuthal current is left in the wake of an ionizing

laser pulse, creating a long solenoid of magnetic field behind the pulse.

Total azimuthal current density nβy at the space-time point (t, ~x) can be expanded to

the lowest order in ξx as

nβy ≈ −
∫ t

−∞
dt′
(
[ṗnG]ay(t

′, ~x) + ~ξ · ∇ [ay(t
′, ~x)ṗnG]

)
(8)
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where ṗn(~x0) is the probability of creating an electron in the vicinity of ~x0 per unit volume

per unit time. The density of neutral gas is nG, and the ionization occurs with the probability

ṗ as the result of, e. g., tunneling or multi-photon ionization. Whichever mechanism prevails

depends on the laser parameters. The assumption of the electron release at rest is reasonable

for most ionization scenarios.

The first term in the RHS of Eq. (8), although linear in the laser field, is negligibly

small if the ionization takes place over several laser periods, as we are going to assume.

The vanishing of the first term in the RHS of Eq. (8) is due to the phase-mixing of the

velocities of electrons released during different phases of the laser vector potential. The

magnitude of the linear term is of the order exp [−ω2
0τ

2
i ] assuming that ṗ ∝ exp [−t2/τ 2

i ].

It is the second, nonlinear term which can produce a sizable contribution to the azimuthal

current due to the fact that the time-averaged product 〈ξxay〉 does not vanish. Physically,

electron displacement ~ξ due to the laser field ensures that two different electrons j and

k, released at different times tj and tk + π/ω at the same location ~x0, end up spatially

separated after the passage of the laser pulse. Had they not been spatially separated, their

respective contributions to the plasma angular momentum, ξ̇(j)
y × x(j) and ξ̇(k)

y × x(k), would

have cancelled.

Since we are concerned with obtaining the angular velocity of order c|a|2(kσ)−1, and

there is already one ∂/∂x derivative in the nonlinear term of Eq. (8), it can be assumed that

~ξ(j)

c
=
∫ t

t′
dt′′ [~a(t′′) − ~a(t′)] , (9)

where the dependence of ~a on ~x is implied. Assuming that ax = a0 cos (ωt − kz), ay =

a0 sin (ωt − kz), and az = ∂xa0 sin (ωt− kz)/k, it can be shown that

nβy(t) = − c

2ω

∂

∂x

∫ t

−∞
dt′ [ṗnG] a2. (10)

Integrating over the transverse dimensions yields the volume density of the angular momen-

tum left behind the laser pulse:

Lz(~x) =
mc2

ω

∫ +∞

−∞
dt′

(
dn

dt′

)
a2(t′, ~x). (11)
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A straightforward calculation confirms that Eq. (11) is identically equal to loss rate of the

laser angular momentum. From Ampere’s law and Eq. (10), the magnetic field left behind

the laser pulse is given by

eBz

mc
=

−1

2ω

∫ t

−∞
dt′

(
dω2

p

dt′

)
a2(t′, ~x). (12)

According to Eqs. (11,12), the magnetic field is simply proportional to the angular momen-

tum lost by the laser pulse. Note that, although electrostatic wakes behind the ionizing laser

pulse have been studied [24], Eq. (12) describes a magnetic wake The present calculation

demonstrates that, during ionization, magnetic fields can be produced on a sub-picosecond

time scale in a collisionless plasma.

Consider the following example: a 50 µJ/30fs laser pulse with the λ = 0.8µm wavelength

is focused to the d = 6µm diameter onto the helium gas at atmospheric pressure. The

peak intensity I = 4 × 1015W/cm2 corresponds to a2 ≈ 10−3, and the plasma density

(assuming single-stage ionization) n = 5.4 · 1019cm−3. From Eq. (12), the peak magnetic

field B0 ≈ 2.5kG.

In summary, the magnetic field generation through the inverse Faraday effect requires a

dissipative mechanism of coupling the angular (spin) momentum of the laser to the plasma,

but the precise nature of the dissipation can enter importantly. Two examples, collisional

absorption and ionization, are considered. Ionization-induced IFE opens the possibility of

generating large magnetic fields on an ultra-short time scale.
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FIGURES

FIG. 1. Azimuthal particle displace-

ment in the prescribed laser field with a0(r) = 0.1 exp(−r2/2σ2)[1 + tanh ζ/T ]. Solid line: no

collisions (γ = 0); dashed line: γ/ω = 0.1; thin solid line: guiding center drift. Laser parameters:

T = 10, σ = 15c/ω. Electron is launched at ζ = −4T at r = σ/3 with a vanishing velocity.
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